

1 Running Head: Carbon fluxes from Bioenergy Harvests

2

3 Title: Multiple Determinants of Carbon Fluxes from Bioenergy Harvests in the U.S. Northeast

4

5 Authors:

6 ANNA M. MIKA

7 Rubenstein School of Environment and Natural Resources

8 University of Vermont

9 Aiken Center

10 81 Carrigan Drive

11 Burlington, Vermont 05405 USA

12

13 WILLIAM S. KEETON*

14 Rubenstein School of Environment and Natural Resources

15 University of Vermont

16 Aiken Center

17 81 Carrigan Drive

18 Burlington, Vermont 05405 USA

19 William.Keeton@uvm.edu

20 +1 (802) 656-2518

21

22 * Corresponding author

23

24 *Abstract*

25 Understanding the greenhouse gas emissions implications of wood bioenergy in the northeastern
26 U.S. will require accurate data on the post-harvest carbon (C) fluxes. However, relatively few
27 studies have evaluated C fluxes and offsets using field data from actual bioenergy harvests. We
28 assessed C fluxes among multiple pools from bioenergy harvests, including whole-tree
29 harvesting (WTH). These harvests were compared to both harvests with no bioenergy produced
30 and unharvested reference sites, using inventory data from 35 locations. The analysis included C
31 transferred to wood products and emissions from energy (electricity, heating, or combined heat
32 and power). We used non-parametric tests to compare changes in C pools between unharvested
33 and harvested stands as well as percent differences in forest C pools, C in wood products, and
34 emissions from energy between types of harvests. All types of harvests decreased aboveground
35 live ($P < 0.0001$) and dead ($P < 0.001$) tree C, increased fine woody debris (FWD) C ($P <$
36 0.0001), and decreased total stand C ($P < 0.001$). There was no change in the downed coarse
37 woody debris (DCWD) C pool ($P > 0.43$) post-harvest, indicating that foresters are leaving
38 sufficient DCWD on site post-harvest. Overall, bioenergy harvests using WTH had less C
39 transferred to wood products and more emissions released from bioenergy than the other two
40 types of harvests, which resulted in a greater net flux of C ($P < 0.05$). A Classification and
41 Regression Tree (CART) analysis determined that the type of harvest or amount of bioenergy
42 generated were not the strongest predictors in the amount of C fluxed from the harvest, although
43 WTH sites had a larger flux of C compared to non-WTH sites (both with and without bioenergy;
44 $P < 0.001$). The type of skidder and the silvicultural treatment had the largest impact on the net
45 flux of C. Although additional studies need to be completed to determine the net emissions of
46 bioenergy harvesting over the long-term and at landscape scales, we recommend that bioenergy

47 harvests in the Northeast reduce their C impact by selecting smaller equipment, hand felling
48 when possible, and leaving a portion of tree tops on site.

49

50 *Key words: northern hardwoods; aboveground carbon; bioenergy harvest; fossil fuel offsets;*
51 *whole-tree harvest*

52

53 INTRODUCTION

54 The increasing concentration of carbon dioxide (CO₂) in the atmosphere **Error! Bookmark not**
55 **defined.** is predicted to have significant detrimental impacts on climate (Trenberth et al. 2007).
56 This has led to a growing interest in managing carbon emissions through mitigation measures,
57 including: decreasing the use of fossil fuels; improving energy efficiency and increasing the use
58 of cleaner, renewable fuels; and maximizing carbon (C) sequestration in forests (IPCC 2007).
59 Forests have been a main focus of those C mitigation conversations (Hamilton et al. 2010) due to
60 their large capacity to sequester and store C (Nabuurs et al. 2007). Some hypothesize that
61 harvesting trees and using the wood in place of fossil fuels for energy production ('bioenergy')
62 such as electricity, heating, or combined heat and power (CHP) could result in a net carbon
63 benefit (Hall 1997, Kroetz and Friedland 2008).

64 However, the net C outcomes (i.e. emissions reductions vs. increases) associated with
65 managing forests for bioenergy production remains uncertain. In the northern hardwood region
66 of the northeastern U.S. a key consideration is that wood biomass harvested for energy
67 applications is typically only one of several products supplied by a single logging operation.
68 Thus, C-accounting needs to consider not only post-harvest C left on site in residual biomass and
69 C fluxes into and out of the forest system, but also C transferred to wood products, the life cycle

70 of those products, and finally fossil fuel offsets (Eriksson et al. 2007, McKechnie et al. 2011).
71 Previous accounting studies (e.g. Manomet Center for Conservation Sciences 2010, Nunery and
72 Keeton 2010, McKechnie et al. 2011) have been limited by a relative lack of empirical data from
73 actual bioenergy harvests, requiring modeling assumptions about carbon fluxes associated with
74 harvesting practices such as whole-tree harvesting (WTH) and increased removals of low grade
75 material. In this study we seek to inform C accounting by reporting field data on C pools and
76 fluxes immediately following bioenergy harvests in the northeastern U.S.

77

78 *Effects of forest management on C pools*

79 Despite the development of complex forest C accounting protocol under both the Kyoto
80 framework (Nabuurs et al. 2007) and developing carbon markets such as the American Carbon
81 Registry (American Carbon Registry 2010), California Action Reserve (California Air Resources
82 Board 2010) and numerous methodologies accepted by the Verified Carbon Standard such as the
83 *Improved Forest Management through Extension of Rotation Age* (Verified Carbon Standard
84 2010), some aspects of forest management effects on C dynamics remain in debate. At issue is
85 how to rigorously account for in-situ C pools (above and belowground), C fluxes through the
86 wood products stream, and the avoided emissions (i.e. 'offsets') associated with substituting
87 wood for other building materials and fossil fuels (Eriksson et al. 2007).

88 Depending on the assumptions made about each of these and their relative weight in the
89 C accounting, studies can come to very different conclusions about forest management. For
90 instance, many papers have determined that less intensive harvesting practices result in the
91 greatest net increase in C storage (Harmon et al. 1990, Harmon and Marks 2002, Swanson 2009,
92 Nunery and Keeton 2010), whereas other studies have inferred exactly the opposite, stressing

93 substitution effects (Eriksson et al. 2007, Davis et al. 2009).

94 In our view bioenergy harvests add to this accounting complexity because the effects on
95 C fluxes remain uncertain. For instance, a critical variable is the extent to which bioenergy
96 operations might result in increased C removals (sometimes termed 'C debt') through intensified
97 harvesting practices, thereby increasing rates of post-harvest flux both into and out of the forest
98 system. Similarly, accounting for fossil fuel offsets requires information about the types of fuels
99 replaced, for which accurate data is not consistently available. In both cases, accurate
100 accounting, and to some extent resolution of the on-going debate about forest bioenergy
101 (Harmon and Marks 2002, Searchinger et al. 2009, McKechnie et al. 2011), will depend on the
102 advent of real (rather than assumed or theoretical) data quantifying these fluxes and substitutions.

103 Quantifying the net C effects of forest management practices, including bioenergy
104 harvesting, requires an understanding of forest C pools and flux pathways and rates. It also
105 requires accounting for harvesting effects on stand structure. For example, harvesting typically
106 results in fewer large trees and may result in less basal area in snags (Crow et al. 2002). It may
107 disproportionately impact dead C pools by affecting the input rate, species composition, and size
108 distribution of downed coarse woody debris (DCWD; Harmon et al. 1986). Removing sources
109 of DCWD (i.e. snags), changing disturbance regimes, and harvesting dead material results in an
110 altered path and decomposition rates of the remaining DCWD (Harmon et al. 1986). Although
111 dead wood decomposes and thus emits C (Parikka 2004, Johnson 2009, Searchinger et al. 2009),
112 the overall deadwood pool can accumulate C for long periods, provided input rates from log
113 recruitment, and exceed outputs (Harmon 2001). Therefore, removing dead wood for bioenergy
114 impacts this stored pool of C.

115 Harvesting reduces forest C stocks (Johnson 2009), with longer harvesting rotations (i.e.

116 less frequent entries) and more structural retention increasing average C storage over the long
117 term (Liski et al. 2001). However, no management results in the highest C storage over time
118 when the accounting is restricted to in-situ forest C and wood products (Nunery and Keeton
119 2010). However, this may only be the case when accounting for *in situ* forest C and wood
120 products without including fossil fuel offsets and adding substitution effects can significantly
121 change the accounting outcome. For instance, combining intensive harvesting and offsetting
122 coal with bioenergy may result in the largest C stocks because large standing biomass are left in
123 the forest stand for longer periods of time (i.e. longer rotations) and bioenergy is offsetting a high
124 emission fossil fuel (Eriksson et al. 2007). In some cases, the starting condition of a site (e.g.
125 bare ground vs. old growth forest), rather than treatment intensity, may have largest effect on C
126 pools (Harmon and Marks 2002). As demand for wood bioenergy increases, understanding the C
127 trade-offs involved in different forest management approaches, including silvicultural treatments
128 (e.g. WTH) specific to bioenergy, will become increasingly important.

129

130 *Carbon mitigation through bioenergy harvests*

131 Some have assumed that bioenergy is ‘carbon-neutral’ because harvested C (later combusted and
132 emitted as CO₂) is resequestered through forest regrowth (Kroetz and Friedland 2008). A
133 developing literature has questioned many of the fundamental assumptions in this argument
134 (Johnson 2009, Searchinger et al. 2009, McKechnie et al. 2011, Gunn et al. In press). However,
135 important questions remain regarding the temporal dynamics of C fluxes associated with
136 bioenergy use. One of these is the time frame over which an initial C ‘debt,’ or flux of C out of
137 the system, might be compensated by a C ‘dividend’ achieved through fossil fuel offsets and
138 forest regrowth (Manomet Center for Conservation Sciences 2010, McKechnie et al. 2011).

139 Another key consideration is how these dynamics will play out at landscape scales as a
140 function of harvests scheduled or staggered across time and space (Gunn et al. In press). There
141 are likely to be compensatory effects at landscape scales, possibly equilibrating C emissions and
142 C uptake across multiple stands harvested at different time periods (new Figure?). However,
143 assuming that an equilibrium condition is theoretically possible, there may nevertheless be a
144 permanent flux of carbon off the landscape if overall harvesting intensity increases, resulting in
145 net average landscape C storage lower than a business as usual baseline (new Figure?). Our
146 study addresses this point using field data to determine whether bioenergy harvests are
147 intensifying C removals.

148 The intensity of bioenergy harvests in the northeastern U.S. may vary considerably,
149 including the area harvested, volume removed, and the type of material harvested. Currently, the
150 main source of bioenergy in developed countries is primary and secondary wood product
151 operations and can range in scale from small family-owned firewood harvesting to large
152 industrial energy plantations (Lattimore et al. 2009). Bioenergy is more expensive than fossil
153 fuels, wind, and hydro and it is not economically feasible to transport forest residues long
154 distances (Eisenbies et al. 2009). Therefore, bioenergy material is typically generated from:
155 thinning operations; residues and mill waste; bioenergy plantations and agro-forestry operations;
156 and fuelwood gathered from urban areas (Lattimore et al. 2009). These can include harvesting
157 tree tops, branches, small diameter stems, and may include pulp and saw logs if the market is
158 favorable (Briedis et al. 2011). However, there has been increasing concern that rising demand
159 for bioenergy will result in increased harvesting of dead wood and residues (Briedis et al. 2011).

160 Despite this concern, some bioenergy harvesting may improve stand stocking and stem
161 quality by removing low grade material. For example, thinning from below (i.e. “stand

162 improvement cutting), sometimes used for bioenergy harvesting, can increase volume
163 production and C sequestration more than thinning from the middle or above (Hoover and Stout
164 2007). However, increased demand for bioenergy may result in more intense harvests, such as
165 WTH, which can result in reductions of DCWD, large logs, and snags (Briedis et al. 2011).
166 WTH is a silvicultural practice that includes the removal of all the aboveground biomass as
167 whole trees (including tree tops) and can also involve the removal of residues (Johnson and
168 Curtis 2001). This differs from stem-only conventional harvesting where only the stems are
169 taken off site (Vanguelova et al. 2010). It is an economical and efficient way of harvesting
170 residues including roundwood on upper tree stems (Briedis et al. 2011). In addition to wildlife
171 habitat and invasive species concerns (Lattimore et al. 2009), WTH may result in a decrease in
172 soil N and C, affecting long-term productivity (Vanguelova et al. 2010), while saw log harvests
173 may increase soil N and C (Johnson and Curtis 2001). The effect of harvesting intensity on C
174 sequestration is still uncertain (Davis et al. 2009).

175 In this study we evaluated the effects of a range of bioenergy harvesting types and
176 intensities on post-harvest C storage and emissions fluxes. We accounted for *in situ* forest
177 carbon including live trees, snags, DCWD, and fine woody debris (FWD), as well as wood
178 products (processing emissions and initial storage), and fossil fuel offsets. These were quantified
179 using empirical rather than modeled data, lending strength to our analysis by avoiding
180 assumptions about types of energy use and product allocation. Data from partial harvests,
181 representative of dominant silvicultural practices in the U.S. Northeast (Sader and Legaard
182 2008), were used to compare harvests without bioenergy to bioenergy harvests either with or
183 without WTH.

184 The study objectives were to: 1) compare the effects of conventional harvests to

185 bioenergy harvests with or without WTH on the immediate post-harvest C storage in the stand,
186 wood products, as well as fossil fuel offsets; and 2) determine which site-specific (e.g. property
187 size, pre-harvest volume, ownership, etc.) and operational (e.g. harvesting equipment,
188 silvicultural prescription, end-use, etc.) variables have the strongest predictive power on net C
189 outcomes of harvesting wood for energy generation. We expected that WTH harvests would
190 result in less C remaining in aboveground live and DCWD pools than harvests without bioenergy
191 or bioenergy harvests without WTH. However, we anticipated that these WTH harvests would
192 have more volume going toward bioenergy than bioenergy harvests without WTH. We predicted
193 that sites that were harvested solely for wood products (i.e. no bioenergy) would have more C
194 transferred to wood products than both types of bioenergy harvests and that harvest type would
195 be strongest predictor of net C outcomes.

196

197 METHODS

198 *Study site*

199 Our study area encompassed portions of the northern hardwood region of the northeastern U.S.,
200 ranging from eastern New York State to western Maine (**Error! Reference source not found.**).
201 The climate is humid continental (i.e. moist temperate) with even distribution of precipitation
202 throughout the year, cold winters, and warm to hot summers. This postglacial region includes
203 plateaus, hills, and the Green, White, and Adirondack mountain ranges. Sediment deposits
204 created fertile soils consisting mostly of the Tunbridge series of soils, which are well-drained,
205 loamy soils. Vegetation in the study area are predominantly mature (50-100 years old), even or
206 multi-aged northern hardwood or northern hardwood-conifer forests. Dominant species include
207 *Acer saccharum* (sugar maple), *Fagus grandifolia* (American beech), *Betula alleghaniensis*

208 (yellow birch), and *Tsuga canadensis* (eastern hemlock), with significant portions of basal area
209 composed also of *Fraxinus americana* (American white ash), *A. rubrum* (red maple), and *Pinus*
210 *strobus* (eastern white pine).

211 We identified a pool of 43 recently harvested candidate sites to which we applied
212 selection and site-matching criteria; of these 35 met our requirements and were included in the
213 study (Table 1). The selection criteria included the following: harvested within 3 years; naturally
214 regenerated stands (no plantations); low to mid elevation (610 m maximum); moderate to high
215 site productivity (sugar maple site class 1-3); and presence of an unharvested adjoining portion
216 of each stand. We specifically excluded clear-cutting operations in our study because most
217 harvests in the Northeast are partial harvests and structural retention considerations for clear-
218 cutting are fundamentally different. Each harvested site was paired with an adjacent unharvested
219 portion of the stand of similar ecological characteristics (i.e. overstory composition, structure,
220 and history) as a reference for estimating pre-harvest conditions. Our study included sites that
221 had been harvested for wood products in addition to bioenergy with and without WTH.

222 Using a standardized survey, we collected information about the ownership,
223 certifications, management objectives, silvicultural treatments, harvesting and skidding
224 machinery, physical characteristics, and other operational variables from the foresters who
225 helped us gain access to the properties (Table 2). We collected information about who did the
226 marking, season and year of harvest, area harvested, location of de-limbing, types and amounts
227 of products generated, type of energy generated from bioenergy harvests (electric, thermal, or
228 CHP), end user of bioenergy (e.g. schools, pulp and paper mill, electric power plant, etc.) and
229 any other meaningful observations or information. In instances where there was more than one
230 application or user of bioenergy from one site, we asked the forester to specify how much of the

231 bioenergy volume went to each user.

232

233 *Field data collection*

234 We inventoried forest structure and composition with 4-7 variable radius prism plots (2.3 metric
235 basal area factor) plots at each site. The plots were randomly placed using a random number
236 table to establish direction ($^{\circ}$) and location of each plot, ensuring adequate distance between
237 sampled plots. Trees > 5 cm at breast height (1.37 m) were inventoried. We recorded diameter
238 at breast height (dbh), species, and live or dead status. For snags, the decay class (ranging from
239 1-9) was recorded and the height measured using an Impulse 200 laser range finder (Laser Tech,
240 Inc., Englewood, CO).

241 At the location of each prism plot, we also placed a fixed area plot centered on the same
242 point. The center of the fixed area plot was the same as the location of the variable radius prism
243 plot. We used the line intercept method (Van Wagner 1968) with transect lengths of 35.7 m and
244 25.24 m to inventory DCWD and FWD, respectively. Trees leaning below a 45° incline from
245 the ground, at least 10 cm in diameter at point of intercept, and greater than 1 m in length were
246 counted as DCWD. We recorded the diameter and decay stage (1-5) following Sollins (1982) for
247 each piece of DCWD at the point of intercept. FWD was considered to be any limb between 2-
248 10 cm diameter at intercept and at least 20 cm in length. The diameter and angle to the ground
249 of each piece of FWD was recorded. Angles were recorded in 5° increments as required in the
250 Woodall and Williams (2005) volume equations.

251

252 *Data analysis*

253 The inventory data were input into the Northeast Ecosystem Management Decision model, NED-

254 2 (Twery et al. 2005), to generate a suite of structural and compositional biometrics, including
255 aboveground biomass of living trees calculated allometrically using the Jenkins et al. (2003)
256 equations. The volume, biomass, and C content of the four pools (aboveground live,
257 aboveground dead, DCWD, and FWD) were calculated as described below.

258 The volume of DCWD by decay stage was calculated for each site using the general
259 volume equation from Woodall and Williams (2005), developed originally by Van Wagner
260 (1968). DCWD biomass was calculated by multiplying the volume of each log by the specific
261 gravity corresponding to decay stage from Harmon et al. (2008). Since the species of each piece
262 of DCWD could not be determined consistently, a weighted average of the specific gravities
263 (using Harmon et al. 2008) for each decay class was calculated based on % basal area (% BA) by
264 species for all live and dead trees at each site. The C content in the DCWD pool at each site was
265 then calculated by multiplying the total biomass by the following C values by decay stage: 0.499
266 (decay stage 1); 0.488 (decay stage 2); 0.486 (decay stage 3); 0.518 (decay stage 4); and 0.501
267 (decay stage 5) (Harmon et al. 2008). The average volume of FWD was calculated by taking the
268 mean of the angles of each piece of FWD for each plot and using equations from Woodall and
269 Williams (2005). The biomass and C content in the FWD pool at each site was calculated in the
270 same manner as the DCWD. Since the decay stage and species of each piece of FWD was not
271 identified, the average C content of the 5 decay stages (i.e. 0.498) was used for all pieces of
272 FWD.

273 Finally, snag volumes at each site were calculated using Honer et al. (1983) species-
274 specific equations. We used species-specific tapering functions from Honer et al. (1983) to
275 convert from our dbh measurements to the 1.30 height for dbh assumed in the volume equations.
276 Tapering functions for morphologically similar species were used in some cases as suggested by

277 Townsend (1996). We followed the protocol in Harmon et al. (2008) to calculate biomass and
278 carbon content, converting to a 1-9 decay stage scale. For snags of unknown species, we
279 generated a weighted specific gravity value based on the % BA of identified snags with the same
280 decay stage as the unknown snag species.

281

282 *Fossil fuel offsets and wood products*

283 We calculated the net C from offsetting fossil fuels with bioenergy, flux of C from the creation
284 of wood products, and the C transferred to wood products. The percent of harvested product that
285 went to energy production was calculated based on volume. All product volumes were
286 converted to cords by calculating the weighted average of metric tonnes/cord or applying a factor
287 of 0.96 cords per thousand board feet (MBF) to convert MBF to cords (Ashley 2001). For
288 harvests that produced bioenergy, the C fluxed from energy generation from wood and that saved
289 from avoided fossil fuel emissions was calculated. The amount of fossil fuels, and therefore C,
290 that was offset was calculated based on the type of energy that was generated from the harvested
291 bioenergy. We only accounted for the carbon emitted from combustion and did not include the
292 greenhouse gas emissions from harvesting, transporting, processing, and other external energy
293 inputs.

294 The amount of bioenergy generated from each harvest was calculated using two methods,
295 depending on available information. The weight of chips, as reported by the operational forester,
296 was used when available. Otherwise, the volume of chips was calculated based on the total
297 biomass harvested, multiplied by the reported % bioenergy by volume. The energy conversion
298 factors for both wood biomass and fossil fuels were calculated for electricity, heating, and CHP
299 (Table 3). The fossil fuel used for heating and CHP was assumed to be natural gas, which has a

300 heating content of 0.12 GJ/gallon (California Air Resources Board 2010). Since emissions for a
301 specific fuel source are the same per unit of energy generated, the total C fluxed depends on the
302 efficiency of the system. For electricity, it was assumed that the bioenergy replaced the
303 Northeast NEWE electricity grid (Table 3; Rothschild et al. 2009).

304 The C transferred to wood products was calculated based on the information supplied by
305 the foresters at each site. When foresters could not provide records (e.g. mill receipts) of the
306 percent volume for each type of product generated from the harvest, we converted the estimated
307 weights of the products to volume. For our analysis we did not treat firewood as a bioenergy
308 product because cordwood is a traditional product in the harvesting baseline we were comparing
309 against bioenergy harvests. The C transferred to wood products was calculated on a per hectare
310 basis to correspond with the units of the emissions from energy generation. To calculate the total
311 C stored and emitted during processing, we assumed that immediately post-harvest 61.4 % of the
312 hardwood saw logs and firewood were in use, 56.9 % of the softwood saw logs were in use, 51.3
313 % of the softwood pulp, and 65.0 % of the hardwood pulp was in use, with the remainder emitted
314 (Smith et al. 2006). The amount of C emitted from wood products is based on the life cycle
315 curves for northern hardwoods presented in Smith et al. (2006).

316 We compared the C fluxed and stored in various pools between types of harvests. To
317 compare harvested sites with their paired reference sites, we used a ‘percent difference’ metric
318 modified from Westerling et al. (2006):

319
$$((x_1 - x_2) / \bar{x}_{1,2}) \quad (1).$$

320 This metric was calculated for all fluxes and C pools and used to eliminate distorted or
321 misleading values that can occur in % change or contrast data. For example, a change in
322 biomass from 1 to 2 Mg/ha represents a 100 % change, but is small in absolute terms compared

323 to a change of 100 to 200 Mg/ha (also 100 %). The percent difference metric normalized these
324 relative contrasts (harvested vs. reference) across all sites, and thus provided a surrogate for
325 estimating pre to post-harvest changes.

326 Finally, to calculate the net flux of C from each type of harvest, we used the following
327 formula:

$$328 \quad \bar{C}_{Flux} = \bar{C}_{Live} + \bar{C}_{Snag} + \bar{C}_{CWD} + \bar{C}_{FWD} + \bar{C}_{WPstored} - \bar{C}_{WPemitted} - (\bar{C}_{Bioenergy} - \bar{C}_{Offset}) \quad (2),$$

329 where WP represents wood products.

330

331 *Statistical analysis*

332 We choose non-parametric tests for our data analysis due to detected departures from normality
333 for some variables. All statistical tests were performed in JMP 9.0.0 for Windows (SAS Institute
334 Inc. 2010) and considered significant at $\alpha = 0.05$. To compare C pools between paired harvested
335 and unharvested stands for each type of harvest as well as all the sites combined, we used the
336 Wilcoxon Signed Rank test. Afterward, the Wilcoxon Rank Sum test with post-hoc multiple
337 comparisons was used for all percent difference tests.

338 Lastly, we ran a multi-variate analysis in S-Plus 8.2 (TIBCO Software Inc. 2008) to
339 identify the variables most predictive of net post-harvest C fluxes. We used a Classification and
340 Regression Tree (CART) analysis to evaluate which variables contributed the most to
341 determining post-harvest net C outcomes, both in remaining C stored in the stand and wood
342 products as well as from fossil fuel offsets. CART is a robust nonparametric statistical method
343 that partitions the variance (termed ‘deviance’) in a dependent variable based on categorical or
344 numeric independent variables (De'ath and Fabricius 2000). It is a powerful tool for ecological
345 analysis because of its ability to accommodate nonlinear relationships, high-order interactions,

346 and missing values (De'ath and Fabricius 2000). The independent variables in our CART
347 analysis and the number of sites for each classification are presented in Table 2. Of the 35 sites
348 we inventoried, all generated saw logs and from those that generated bioenergy product, it was
349 all in the form of wood chips. About half (46 %) of the harvests also produced pulp as a product,
350 28 produced firewood, 2 produced veneer, and 3 produced pallet. The percent bioenergy by
351 volume (of total product) ranged from 5 – 99 %.

352

353 RESULTS

354 *Effects of harvesting on forest stand C pools*

355 Values for many of the carbon pools pre- and post-harvest ranged widely both within and among
356 treatment categories (Table 4). Across all sites the largest pool of C was in the live trees, with a
357 mean of 92.13 Mg C/ha (53.12 – 151.86 Mg C/ha) in the unharvested stands and 62.87 Mg C/ha
358 (27.05 – 112.21 Mg C/ha) in the harvested stands. The snags comprised a very small portion of
359 the total C on average, accounting for less than 7 Mg C/ha in the unharvested stands and 2.26 Mg
360 C/ha in the harvested stands (mean of 1.82 Mg C/ha and 0.88 Mg C/ha, respectively). The
361 DCWD pool, on average, held 6.25 Mg C/ha (1.41 – 14.78 Mg C/ha) in the unharvested stands
362 and 6.98 Mg C/ha (1.04 – 15.41 Mg C/ha) in the harvested stands. The FWD pool held a mean
363 of 1.26 Mg C/ha (0.59 – 2.30 Mg C/ha) in the unharvested stands and 2.09 Mg C/ha (1.02 – 5.52
364 Mg C/ha) in the harvested stands. Finally, the total mean C in the unharvested stands ranged
365 from 68.83 – 159.95 Mg/ha, while it was 40.22 – 123.81 Mg/ha in the harvested stands. See
366 Table 4 for mean C content (\pm SE) for each of the types of harvests.

367 Comparisons of C levels contrasting paired harvested and reference sites revealed
368 differences for some aboveground pools (Table 5). There were significantly higher amounts of

369 C in aboveground live trees ($P < 0.0001$), snags ($P < 0.001$), and total C ($P < 0.0001$) in the
370 unharvested stands than their paired harvested stands (Table 5). There was more C in the FWD
371 pool post-harvest ($P < 0.0001$) compared to unharvested sites, but no statistically significant
372 difference in the DCWD C pool (Table 5). Bioenergy WTH sites had a smaller snag C pool
373 than paired unharvested sites ($P = 0.003$); however, this difference did not hold for non-WTH
374 bioenergy harvests (Table 5).

375 Statistical tests using the percent difference metric yielded a different perspective than
376 those using absolute values. Comparing the percent differences in each of the forest stand C
377 pools as well as the total change in stand C revealed no statistically significant difference
378 between the three types of harvest ($P > 0.05$). However, our dataset showed evidence of wide
379 variability among sites in terms of harvesting effects on C pools. Specifically, a Kruskal-Wallis
380 test revealed that the variances between types of harvests were statistically significantly different
381 from each other ($H = 12.00$; d.f. = 2; $P < 0.01$). This range of variability in percent difference
382 was significantly wider (SD = 0.26) for bioenergy harvests with WTH than for the other
383 treatments (no bioenergy SD = 0.14; bioenergy harvesting without WTH SD = 0.07). Since the
384 Wilcoxon Rank Sum showed that the significant difference was between WTH and non-WTH
385 sites, we combined the bioenergy without WTH and conventional (also no WTH). Comparing
386 WTH to non-WTH sites showed that the WTH sites had a significantly larger total flux of C ($H =$
387 11.87; d.f. = 1; $P < 0.001$).

388

389 *Emissions from energy production and C in wood products*

390 All of the bioenergy produced from the harvests included in this study was derived from wood
391 chips. Most of the bioenergy went to utility-scale bioenergy power plants around the Northeast

392 (83 %), some went to heat local schools (7 %), and the rest went to CHP at pulp and paper mills
393 (10 %; Table 2). On average, bioenergy harvests using WTH produced about 51 % bioenergy by
394 volume while bioenergy harvests without WTH produced only 10 %. This resulted in more
395 emissions from energy generation, especially from electricity, than those from bioenergy
396 harvests without WTH (Figure 2). The emissions from thermal energy generation (0.19 Mt
397 C/ha) and CHP (0.58 Mt C/ha) were 106 % and 34 % less than those from electricity (20.71 Mt
398 C/ha), respectively. We found a statistically significant difference between the types of
399 bioenergy harvest based on the results of the Wilcoxon Rank Sum test. Emissions from
400 bioenergy harvests with WTH were significantly higher ($P < 0.05$) compared to non-WTH
401 bioenergy harvests. Since the bioenergy harvests using WTH yielded more biomass for
402 bioenergy production than those without WTH, they also resulted in more savings from the
403 avoided burning of fossil fuels (8.29 Mt C/ha for WTH sites versus 1.97 Mt C/ha for non-WTH
404 sites; $P < 0.05$; Figure 2).

405 The bioenergy harvests that did not use WTH methods not only generated fewer
406 emissions (7.15 Mt C/ha) from energy generation, but also left more C stored in the stand
407 (103.42 Mt C/ha) and in wood products post-harvest (57.48 Mt C/ha) than bioenergy WTH sites
408 (28.93 Mt C/ha emissions from bioenergy; 69.09 Mt C/ha in forest stand; and 14.84 Mt C/ha in
409 wood products; Figure 2). Bioenergy without WTH had more C transferred to saw logs and
410 firewood than either the bioenergy with WTH ($P < 0.05$) or no bioenergy harvests ($P < 0.05$).
411 Although there was no statistically significant difference between C transferred to pulp for any of
412 the harvesting categories ($P = 0.85$), the total C transferred to wood products and emitted from as
413 a consequence of converting standing trees into wood products was significantly higher for
414 bioenergy harvests without WTH than for WTH ($P < 0.05$).

415 Using the percent difference metric (Equation 2) yielded some statistically significant
416 results between the types of harvests and the net C flux ($P < 0.001$). The mean percent
417 difference in net C flux was -54 % for bioenergy harvests with WTH, -28 % for bioenergy
418 without WTH, and -20 % for harvests with no bioenergy. Based on the post-hoc multiple
419 comparisons, the significant differences can be attributed to contrasts between the bioenergy
420 harvests with WTH and harvests without WTH ($P < 0.05$) and between the former and harvests
421 that had no bioenergy production ($P < 0.001$).

422 In order to determine whether treating firewood as a wood product instead of bioenergy
423 changed our results, we re-ran the statistical analysis with firewood as bioenergy without
424 reclassifying our sites. The Wilcoxon Rank Sum test showed that the amount of C stored in
425 wood products (without firewood) and emitted from the generation of those wood products was
426 significantly lower for harvests without bioenergy than for bioenergy harvests without WTH (P
427 < 0.5) or bioenergy harvests with WTH ($P < 0.05$). Furthermore, calculating the emissions from
428 firewood with those from wood chip bioenergy resulted in no statistically significant differences
429 between types of harvests ($P > 0.05$). This resulted in no statistically significant differences
430 between the types of harvests for the percent difference analyses of the total net C flux ($P >$
431 0.05).

432

433 *Influence of multiple predictors on C outcomes*

434 The CART analysis did not select harvesting type (e.g. bioenergy vs. non-energy or
435 WHT) as the best predictor of net C flux. Instead the analysis indicated that the strongest
436 predictor for the sites we sampled was the type/size of skidding machinery (Figure 3).
437 Specifically, harvests where a grapple skidder (e.g. John Deere 648H model) was used had a

438 larger flux of C post-harvest than those employing a bulldozer/forwarder, a cable skidder (e.g.
439 John Deere JD 540G-III model), and/or a grapple skidder. This is evident in the CART results,
440 where skidder type was the top ranked predictor variable associated with the first partition of the
441 dependent variable (Figure 3). Moving down the regression tree, two variables emerged as most
442 predictive of the second tier partitions in total net flux of C. These were primary silvicultural
443 treatment and type and felling equipment. The largest flux of C was associated with treatments
444 including thinning from above, intensive single-tree selection, and shelterwood harvests, whereas
445 thinning from below, small group selection, or treatments combining small group selection and
446 thinning correlated with intermediate C flux levels (Figure 3). Felling equipment type also
447 explained deviance in the total C flux post-harvest, at levels less than those associated with
448 silvicultural treatment. Net C flux was more intense from harvests employing only a tree shear
449 or mechanized harvester compared to harvests using only chainsaws (i.e. hand felling) or a
450 combination of chainsaws and mechanized harvesting (Figure 3). The greatest overall net C flux
451 was associated with the combination of grapple skidding and more intensive silvicultural
452 treatments, whereas the lowest C fluxes occurred at sites with hand felling used in conjunction
453 with cable-skidders, or bulldozers and forwarders.

454

455 DISCUSSION

456 Our study illustrates the influences on net C flux from bioenergy harvests, primarily WTH and
457 type of equipment used. Although other researchers have explored the impacts of harvesting
458 wood products (Harmon and Marks 2002, Swanson 2009, Nunery and Keeton 2010) and
459 bioenergy (Eriksson et al. 2007, McKechnie et al. 2011) on net C flux using , our study is one of
460 the first to use field data from bioenergy harvests. This previous research has shown that the

461 type of wood material removed and the particular end-use significantly influences net C flux
462 (Eriksson et al. 2007). Although Nunery and Keeton (2010) found that the harvesting intensity,
463 including structural retention, and frequency impact both initial and long-term C storage, their
464 study did not incorporate bioenergy. Our results and other research (Littlefield and Keeton In
465 Review) indicate that the bioenergy harvests are highly variable in terms of both structural
466 impacts and C emissions, and that the level of the impact depends more on the specifics of
467 silvicultural treatment and harvesting/skidding machinery than the percent of harvested volume
468 going to energy generation.

469 There was insufficient evidence in our dataset to conclude generally that an increase in
470 bioenergy harvesting in the northeastern U.S. will result in an intensification of management
471 with associated increases in net C fluxes. Instead the results tell a more nuanced story. The
472 CART analysis clearly showed that operational variables, particular skidder size and type, were
473 strongly predictive of net C flux because of the associated reductions in residual stand structure
474 (i.e. increased C removals). These predictors, in turn, were positively correlated with WTH.
475 Thus we can infer that, at least in some instances, bioenergy harvests will intensify C removals
476 and net C fluxes, but the C outcomes will vary based on choice of operating machinery and
477 silvicultural treatment specific to individual harvests.

478 Some researchers have argued that bioenergy harvesting practices, such as WTH, may
479 result in a decrease of DCWD, large logs, and snags (Briedis et al. 2011). Although it is not
480 economically worthwhile to transport forest residues long distances (Eisenbies et al. 2009), wood
481 is perceived as a clean and renewable source of energy (Kroetz and Friedland 2008). The
482 bioenergy market will drive the type of wood material that will be harvested. In our study, all
483 types of harvests decreased aboveground live and snag C pools and increased the DCWD (except

484 for a small decrease at the bioenergy with WTH sites) and FWD pool. Although bioenergy
485 harvests with WTH had less C in snags and DCWD post-harvest, there was no statistically
486 significant difference between the types of harvests and any of the C pools we measured. Due to
487 the large variability within and between types of harvests, we cannot conclude, as a blanket
488 statement, that all bioenergy harvests lead to increased removal of dead wood and residues.
489 Rather, the wide range of variability suggested this outcome remains a possibility for all types of
490 harvesting, and thus snag retention, or lack therefore, appears to be a more general issue.

491 In our study bioenergy harvests using WTH had the largest total net flux of C. This was
492 due to less C being transferred to wood products and more emitted as bioenergy from this type of
493 harvest. Wood products represent an important pool of C that can stay intact for decades if
494 stored in materials such as furniture or construction grade lumber (Malmesheimer et al. 2008).
495 Our results suggest there may be a trade-off between how much harvested volume from
496 bioenergy harvests is allocated to wood products versus energy generation. However, our data
497 did not support a conclusion that bioenergy harvests using WTH results in less C remaining in
498 aboveground live trees and DCWD than bioenergy harvests with no WTH or harvests with no
499 bioenergy. Although bioenergy harvests with WTH had lower snag C post-harvest, this result
500 may indicate there is sufficient structural retention, which results in higher forest stand C storage
501 than more intense harvests (Nunery and Keeton 2010). Furthermore, life cycle emissions may be
502 higher if live trees are harvested for bioenergy instead of residues, such as tree tops and slash
503 (Eriksson et al. 2007, McKechnie et al. 2011). Long-term modeling would be necessary to
504 evaluate how the type of material harvested (e.g. volume of live and dead biomass) and amount
505 of wood volume allocated to wood products and bioenergy affects long-term C balance
506 (Schlamadinger and Marland 1999, McKechnie et al. 2011).

507

508 *Variability between harvests*

509 Our results suggest there is considerable variability between and within all types of harvests in
510 the U.S. Northeast. Specifically, the fact that the type of harvest or the amount of harvested
511 volume allocated to bioenergy was not the determining factor for net C flux implies variability in
512 intensities of biomass. It also suggests variability in the allocation of harvested products to
513 different end uses, including bioenergy, pulp fiber, and solid wood products. One indicator of
514 why the average decrease in net C for WTH was larger (at -54 % as opposed to -20 % or -28 %)
515 is that these harvests were more likely to use grapple skidders. Use of grapple skidders, in turn,
516 resulted in a larger decrease in net C based on the CART results. At WTH sites 76 % used
517 grapple skidders, while only 30 % of the non-WTH (both with and without bioenergy) used
518 grapple skidders. These results show that harvesting method, intensity, and allocation of
519 products most affects the total net flux of C immediately post-harvest.

520 Despite wide variation in harvesting approaches and site conditions, some clear trends
521 emerged from our dataset. Although not statistically significant, conventionally harvested
522 stands appeared to have more C in DCWD and FWD post-harvest than the bioenergy WTH
523 stands. The bioenergy without WTH had the largest DCWD C pool and intermediate C storage
524 in FWD post-harvest. At conventionally harvested sites, the total C in down woody material
525 (DCWD and FWD) ranged from 5.4 – 8.0 % of total forest stand C at the unharvested sites and
526 10.9 – 13.2 % at the harvested sites. On average, down woody material, or lying dead wood,
527 accounts for 1.7 to 4.6 % of total forest C in all forest types (Evans and Ducey 2010). This
528 differs depending on forest type, with large ranges reported in the literature. Northern hardwood
529 forests typically have 19.8-39.5 Mt/ha of DCWD (Gore and Patterson III 1986). This is an

530 important pool of C that, besides holding C, performs other vital roles such as providing wildlife
531 habitat, protecting soil erosion, enhancing soil moisture retention, cycling nutrients, and
532 providing riparian functions (Harmon et al. 1986, Evans and Ducey 2010). The stands in our
533 study had substantially higher C pools in DCWD and FWD than the 1.7-4.6 % range reported by
534 Evans and Ducey (2010). From the harvests in our sample, it appears that many logging
535 operations in the Northeast are either leaving adequate DCWD on site or are adding additional
536 pieces during the harvest. However, for the FWD pool this was the case only for bioenergy
537 without WTH.

538

539 *Uncertainties in assessing impacts of bioenergy harvests*

540 Research has shown the importance of assessing the impacts of bioenergy harvests over the long-
541 term (Schlamadinger and Marland 1999, McKechnie et al. 2011). Some argue that burning
542 wood releases the same amount of greenhouse gases per unit of energy produced as burning
543 fossil fuels and that refining bioenergy releases more C than petroleum-based products
544 (Searchinger et al. 2009). For this reason, the amount of C that needs to be sequestered over
545 time per unit of energy produced may actually be greater for biofuels than fossil fuels (Manomet
546 Center for Conservation Sciences 2010). These arguments imply that the long-term impacts of
547 bioenergy harvesting are necessary to understand the length of the C debt then dividend.

548 The length of this C debt and dividend depends on the end-use of the bioenergy (Eriksson
549 et al. 2007). Using wood for energy production, especially electricity, is not as efficient in terms
550 of the amount of C released per unit of energy generated as using other fuels such as natural gas
551 (Manomet Center for Conservation Sciences 2010). Furthermore, the more C that was initially
552 on the forest stand, the longer it can take (through regeneration and C offsets) for the same

553 amount of C to be restored to the landscape (Schlamadinger and Marland 1999). Although in
554 our study the end-use of bioenergy included electricity, CHP, and thermal, most of the wood
555 chips were allocated to electricity generation, there were not enough replicates of CHP and
556 thermal to conduct a sensitivity analysis. This analysis of the total net C flux should also include
557 the change in forest C stocks after harvesting (Johnson 2009, McKechnie et al. 2011).

558 Finally, our study attempted to quantify the effects of bioenergy harvesting in northern
559 hardwood and mixed forest, but did not incorporate indirect emissions, such as harvesting,
560 processing, and transportation. We only considered the immediate post-harvest C storage in the
561 stand itself, wood products generated, and emissions from energy production, which only
562 included the C emitted during combustion of wood chips or fossil fuels. However, indirect
563 emissions only account for approximately 2-3 % of the total life-cycle emissions for bioenergy-
564 derived electricity, heat, or CHP (Manomet Center for Conservation Sciences 2010). However,
565 indirect emissions are much higher, at about ¼ of total emissions, for energy produced from
566 natural gas. Performing a full life-cycle analysis and taking indirect emissions into consideration
567 may result in a smaller gap between emissions from bioenergy or fossil fuels. However, the
568 indirect emissions depends on many factors including the proximity of the fuel source (for both
569 bioenergy and fossil fuels), the efficiency of the transportation vehicles, and many other external
570 factors (Manomet Center for Conservation Sciences 2010). These many complex factors would
571 result in additional assumptions needing to be made, creating uncertainty in the results. For this
572 reason, only the actual C emitted from combustion of each type of fuel was used in the analysis.

573

574 *Implications for bioenergy harvesting and C-accounting*

575 Some researchers argue that atmospheric C reductions can be achieved in the long-term through

576 sustainable forest management in combination with C transferred to wood products (Liu and Han
577 2009). In the short-term, similarly to McKechnie *et al.* (2011), we found that in all bioenergy
578 harvesting scenarios, the C reduced in the stand and emitted from bioenergy energy generation
579 was greater than that for equal amounts of energy produced from fossil fuels. In addition to
580 considering the temporal scale, many researchers (Schlamadinger and Marland 1999,
581 Searchinger et al. 2009, Manomet Center for Conservation Sciences 2010) have recently urged
582 for a landscape C analysis of the effects of bioenergy harvesting on long-term C storage. A C
583 analysis may only be relevant at the specified spatial and temporal scale and may give
584 completely different answers depending on its scope (Harmon 2001).

585 Some research has suggested that longer harvesting rotations and less intensive
586 harvesting, or no management at all, may have the greatest C benefit (Liski et al. 2001, Peng et
587 al. 2002, Nunery and Keeton 2010). The finding that forest management did not affect net C
588 flux is contrary to our findings, where this variable had the largest impact. Furthermore,
589 although some believe that bioenergy harvesting can be increased in the Northeast for a C benefit
590 (Kroetz and Friedland 2008), the long-term implications on atmospheric CO₂ concentrations
591 must be considered. Understanding the implications of bioenergy harvests on the long-term net
592 C flux will be vital in guiding informed energy policy.

593

594 **Acknowledgements**

595 We thank Don Tobi and many other foresters in VT, NH, and NY who helped locate properties
596 for sampling, showed us round, and provided us with valuable information. We also thank the
597 landowners for allowing us access to their properties. We are grateful to our summer field crew
598 Isabel Beavers, Emily Potter, and especially Caitlin Littlefield. The UVM Carbon Dynamics

599 Lab provided feedback on an early version of this manuscript. This research was supported by a
600 grant from the Northeastern States Research Cooperative.

601

602 LITERATURE CITED

603 American Carbon Registry. 2010. Forest Carbon Project Standard Version 2.1.

604 Ashley, B. S. 2001. Reference Handbook for Foresters. NA-FR-15, U.S. Department of
605 Agriculture, Forest Service, State and Private Forestry, Northeastern Area, Morgantown,
606 West Virginia, USA.

607 Birdsey, R. A. 1992. Carbon storage and accumulation in United States forest ecosystems. . Gen.
608 Tech. Rep. WO-59, Department of Agriculture, Forest Service, Washington, DC, USA.

609 Briedis, J. I., J. S. Wilson, Jeffrey G. Benjamin, and R. G. Wagner. 2011. Biomass retention
610 following whole-tree, energy wood harvests in central Maine: Adherence to five state
611 guidelines. *Biomass and Bioenergy* **35**:3552-3560.

612 California Air Resources Board. 2010. Local Government Operations Protocol For the
613 quantification and reporting of greenhouse gas emissions inventories Version 1.1.

614 Crow, T. R., D. S. Buckley, E. A. Nauertz, and J. C. Zasada. 2002. Effects of management on the
615 composition and structure of northern hardwood forests in upper Michigan. *Forest
616 Science* **48**:129-145.

617 Davis, S. C., A. E. Hessl, C. J. Scott, M. B. Adams, and R. B. Thomas. 2009. Forest carbon
618 sequestration changes in response to timber harvest. *Forest Ecology and Management*
619 **258**:2101-2109.

620 De'ath, G., and K. E. Fabricius. 2000. Classification and Regression Trees: A Powerful Yet
621 Simple Technique for Ecological Data Analysis. *Ecology* **81**:3178-3192.

622 Demirbas, A. 2001. Biomass resource facilities and biomass conversion processing for fuels and
623 chemicals. *Energy Conversion and Management* **42**:1357-1378.

624 Eisenbies, M., E. Vance, W. Aust, and J. Seiler. 2009. Intensive Utilization of Harvest Residues
625 in Southern Pine Plantations: Quantities Available and Implications for Nutrient Budgets
626 and Sustainable Site Productivity. *BioEnergy Research* **2**:90-98.

627 Eriksson, E., A. R. Gillespie, L. Gustavsson, O. Langvall, M. Olsson, R. Sathre, and J. Stendahl.
628 2007. Integrated carbon analysis of forest management practices and wood substitution.
629 *Canadian Journal of Forest Research* **37**:671-681.

630 Evans, A. M., and M. J. Ducey. 2010. Carbon Accounting and Management of Lying Dead
631 Wood. *Forest Guild*, Santa Fe, New Mexico, USA.

632 Gore, J. A., and W. A. Patterson III. 1986. Mass of downed wood in northern hardwood forests
633 in New Hampshire: potential effects of forest management. *Canadian Journal of Forest
634 Research* **16**:335-339.

635 Gunn, J. A., D. J. Ganz, and W. S. Keeton. In press. Biogenic vs. geologic carbon emissions and
636 forest biomass energy production. *Global Change Biology*.

637 Hall, D. O. 1997. Biomass energy in industrialised countries--a view of the future. *Forest
638 Ecology and Management* **91**:17-45.

639 Hamilton, K., M. Sjardin, M. Peters-Stanley, and T. Marcello. 2010. Building Bridges: State of
640 the Voluntary Carbon Markets 2010. A Report by Ecosystem Marketplace & Bloomberg
641 New Energy Finance. The Katoomba Groups' Ecosystem Marketplace, New York, NY
642 and Washington, DC, USA.

643 Harmon, M. E. 2001. Carbon sequestration in forests: addressing the scale question. *Journal of
644 Forestry* **99**:24-29.

645 Harmon, M. E., W. K. Ferrell, and J. F. Franklin. 1990. Effects on carbon storage of conversion
646 of old-growth forests to young forests. *Science* **247**:699-702.

647 Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, N. H.
648 Anderson, S. P. Cline, N. G. Aumen, J. R. Sedell, G. W. Lienkaemper, K. Cromack Jr.,
649 and K. W. Cummins. 1986. Ecology of coarse woody debris in temperate ecosystems.
650 *Advances in Ecological Research* **15**:133-302.

651 Harmon, M. E., and B. Marks. 2002. Effects of silvicultural practices on carbon stores in
652 Douglas-fir – western hemlock forests in the Pacific Northwest, U.S.A.: results from a
653 simulation model. *Canadian Journal of Forest Research* **32**:863-877.

654 Harmon, M. E., C. W. Woodall, B. Fasth, and J. Sexton. 2008. Woody detritus density and
655 density reduction factors for tree species in the United States: a synthesis. *Gen. Tech.
656 Rep. NRS-29*, U.S. Department of Agriculture, Forest Service, Northern Research
657 Station., Newtown Square, Pennsylvania, USA.

658 Honer, T. G., M. F. Ker, and I. S. Alemdag. 1983. Metric timber tables for the commercial tree
659 species of central and eastern Canada. *Info. Rep. M-X-140*, Maritime Forest Research
660 Centre, Fredericton, New Brunswick, Canada.

661 Hoover, C., and S. Stout. 2007. The carbon consequences of thinning techniques: stand structure
662 makes a difference. *Journal of Forestry* **105**:266–270.

663 IPCC. 2007. Summary for Policymakers. In: *Climate Change 2007: Mitigation. Contribution of
664 Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on
665 Climate Change*. Intergovernmental Panel on Climate Change, New York, NY, USA.

666 Jenkins, J. C., D. C. Chojnacky, L. S. Heath, and R. A. Birdsey. 2003. National-scale biomass
667 estimators for United States tree species. *Forest Science* **49**:12-35.

668 Johnson, D. W., and P. S. Curtis. 2001. Effects of forest management on soil C and N storage:
669 meta analysis. *Forest Ecology and Management* **140**:227-238.

670 Johnson, E. 2009. Goodbye to carbon neutral: getting biomass footprints right. *Environmental
671 Impact Assessment Review* **29**:165-168.

672 Kroetz, K. M., and A. J. Friedland. 2008. Comparing costs and emissions of northern New
673 England space heating fuel options. *Biomass and Bioenergy* **32**:1359-1366.

674 Lattimore, B., C. T. Smith, B. D. Titus, I. Stupak, and G. Egnell. 2009. Environmental factors in
675 woodfuel production: Opportunities, risks, and criteria and indicators for sustainable
676 practices. *Biomass and Bioenergy* **33**:1321-1342.

677 Liski, J., A. Pussinen, K. Pingoud, R. MskipSs, and T. Karjalainen. 2001. Which rotation length
678 is favourable to carbon sequestration? *Canadian Journal of Forest Research-Revue
679 Canadienne De Recherche Forestiere* **31**:2004-2013.

680 Littlefield, C. E., and W. S. Keeton. In Review. Effects of wood bioenergy harvesting on
681 ecologically important stand structure characteristics in northern hardwood forests.
682 Submitted to *Ecological Applications*.

683 Liu, G., and S. Han. 2009. Long-term forest management and timely transfer of carbon into
684 wood products help reduce atmospheric carbon. *Ecological Modelling* **220**:1719-1723.

685 Malmsheimer, R. W., P. Heffernan, S. Brink, D. Crandall, F. Deneke, C. Galik, E. Gee, J. A.
686 Helms, N. McClure, M. Mortimer, S. Ruddell, M. Smith, and J. Stewart. 2008. Forest
687 Management Solutions for Mitigating Climate Change in the United States. *Journal of
688 Forestry* **106**:115-118.

689 Manomet Center for Conservation Sciences. 2010. Massachusetts biomass sustainability and
690 carbon policy study: report to the Commonwealth of Massachusetts Department of
691 Energy Resources. Natural Capital Initiative Report NCI-2010-03, Brunswick, Maine,
692 USA.

693 McKechnie, J., S. Colombo, J. Chen, W. Mabee, and H. L. MacLean. 2011. Forest Bioenergy or
694 Forest Carbon? Assessing Trade-Offs in Greenhouse Gas Mitigation with Wood-Based
695 Fuels. *Environmental Science & Technology* **45**:789-795.

696 Nabuurs, G. J., O. Masera, K. Andrasko, P. Benitez-Ponce, R. Boer, M. Dutschke, E. Elsiddig, J.
697 Ford-Robertson, P. Frumhoff, T. Karjalainen, O. Krankina, W. A. Kurz, M. Matsumoto,
698 W. Oyhantcabal, N. H. Ravindranath, M. J. Sanz Sanchez, and X. Zhang. 2007. *Forestry*.
699 In: *Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth*
700 *Assessment Report of the Intergovernmental Panel on Climate Change*.
701 *Intergovernmental Panel on Climate Change*, New York, NY, USA.

702 Nunery, J. S., and W. S. Keeton. 2010. Forest carbon storage in the northeastern United States:
703 net effects of harvesting frequency, post-harvest retention, and wood products. *Forest*
704 *Ecology and Management* **259**:1363-1375.

705 Parikka, M. 2004. Global biomass fuel resources. *Biomass and Bioenergy* **27**:613-620.

706 Peng, C., H. Jiang, M. J. Apps, and Y. Zhang. 2002. Effects of harvesting regimes on carbon and
707 nitrogen dynamics of boreal forests in central Canada: a process model simulation.
708 *Ecological Modelling* **155**:177-189.

709 Rothschild, S. S., C. Quiroz, M. Salhotra, and A. Diem. 2009. The Value of eGRID and
710 eGRIDweb to GHG Inventories. Page 13. U.S. Environmental Protection Agency,
711 Washington, District of Columbia, USA.

712 Sader, S. A., and K. R. Legaard. 2008. Inclusion of forest harvest legacies, forest type, and
713 regeneration spatial patterns in updated forest maps: A comparison of mapping results.
714 *Forest Ecology and Management* **255**:3846-3856.

715 SAS Institute Inc. 2010. JMP.

716 Schlamadinger, B., and G. Marland. 1999. Net effect of forest harvest on CO₂ emissions to the
717 atmosphere: a sensitivity analysis on the influence of time. *Tellus B* **51**:314-325.

718 Searchinger, T. D., S. P. Hamburg, J. Melillo, W. Chameides, P. Havlik, D. M. Kammen, G. E.
719 Likens, R. N. Lubowski, M. Obersteiner, M. Oppenheimer, G. Philip Robertson, W. H.
720 Schlesinger, and G. David Tilman. 2009. Fixing a critical climate accounting error.
721 *Science* **326**:527-528.

722 Smith, J. E., L. S. Heath, K. E. Skog, and R. A. Birdsey. 2006. Methods for calculating forest
723 ecosystem and harvested carbon with standard estimates for forest types of the United
724 States. Gen. Tech. Rep. NE-343, Department of Agriculture, Forest Service, Northeastern
725 Research Station, Newtown Square, Pennsylvania, USA.

726 Sollins, P. 1982. Input and decay of coarse woody debris in coniferous stands in western Oregon
727 and Washington. *Canadian Journal of Forest Research* **12**:18-28.

728 Swanson, M. E. 2009. Modeling the effects of alternative management strategies on forest
729 carbon in the Nothofagus forests of Tierra del Fuego, Chile. *Forest Ecology and*
730 *Management* **257**:1740-1750.

731 TIBCO Software Inc. 2008. S+.

732 Townsend, P. 1996. Honer's standard volume table estimates compared to Nova Scotia stem
733 analysis. Forest Planning and Research Section, Forestry Division, Nova Scotia
734 Department of Natural Resources, Truro, Nova Scotia, Canada.

735 Trenberth, K. E., P. D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D. Parker,
736 F. Rahimzadeh, J. A. Renwick, M. Rusticucci, B. Soden, and P. Zhai. 2007.
737 Observations: Surface and Atmospheric Climate Change. In: *Climate Change 2007: The*
738 *Physical Science Basis. Contribution of Working Group I to the Fourth Assessment*

739 Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on
740 Climate Change, New York, NY, USA.

741 Twery, M. J., P. D. Knopp, S. A. Thomasma, H. M. Rauscher, D. E. Nute, W. D. Potter, F.
742 Maier, J. Wang, M. Dass, H. Uchiyama, A. Glende, and R. E. Hoffman. 2005. NED-2: A
743 decision support system for integrated forest ecosystem management. Computers and
744 Electronics in Agriculture **49**:24-43.

745 Van Wagner, C. E. 1968. The Line Intersect Method in Forest Fuel Sampling. Forest Science
746 **14**:20-26.

747 Vanguelova, E., R. Pitman, J. Luiro, and H.-S. Helmisaari. 2010. Long term effects of whole tree
748 harvesting on soil carbon and nutrient sustainability in the UK. Biogeochemistry **101**:43-
749 59.

750 Verified Carbon Standard. 2010. Approved VCS Methodology VM0003 Version 1.0.
751 Methodology for Improved Forest Management through Extension of Rotation Age.
752 Sectoral Scope 14.

753 Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam. 2006. Warming and Earlier
754 Spring Increase Western U.S. Forest Wildfire Activity. Science **313**:940-943.

755 Woodall, C., and M. Williams. 2005. Sampling protocol, estimation, and analysis procedures for
756 the down woody materials indicator of the FIA program. Gen. Tech. Rep. NC-256,
757 Department of Agriculture, Forest Service, North Central Research Station, St. Paul,
758 Minnesota, U.S.A.

759

760

761

762 **Table 1** – Site characteristics for live trees in unharvested stands including: NED-2 forest types;
 763 percent slope; elevation (meters), aspect (degrees), percent conifer of basal area (BA); total basal
 764 area (m^2/ha); quadratic mean diameter at breast height (cm); aboveground biomass (Mg/ha); and
 765 percent canopy closure.

Site ID	Forest Type	Slope (%)	Elevation (m)	Aspect (°)	Percent Conifer (% BA)	Basal Area (m^2/ha)	QMD (cm)	Above-ground live biomass (Mg/ha)	Canopy Closure (%)	
1	Pine Hardwood	23.1	233	234	28.9	24.9	23.9	152.4	67	
2	Northern Hardwood	12.3	248	221	7.9	28.9	21.6	185.7	87	
3	Maple-Basswood	17.6	219	50	8.9	25.8	17.6	162.5	84	
4	Oak Northern Hardwood	15.8	277	179	3.4	27.1	20.9	177.0	84	
5	Northern Hardwood	24.9	596	30	10.7	32.1	16.7	202.5	95	
6	Hemlock Hardwood	5.2	165	205	50.5	46.4	27.4	303.7	97	
7	Northern Hardwood	10.5	439	96	9.6	33.5	17.7	217.5	94	
8	Pine Hardwood	7.0	230	114	26.2	26.2	23.9	158.6	71	
9	Hemlock Hardwood	14.1	155	245	43.5	31.7	30.0	213.9	83	
10	Hemlock Hardwood	12.3	156	326	41.2	15.6	21.3	106.2	46	
11	Northern Hardwood	10.5	244	183	5.5	31.6	19.0	189.4	88	
12	Spruce-Northern Hardwood	21.3	407	26	52.1	33.5	16.1	205.1	86	
13	Pine Hardwood	10.5	292	66	18.1	38.1	19.4	253.4	96	
14	Hemlock Hardwood	0.0	306	139	66.7	41.3	27.2	244.7	89	
15	Sugar Maple	48.8	538	53	1.7	26.6	21.0	206.4	88	
16	Mesic Mixed Pine-Hardwood	3.5	209	39	10.9	31.6	18.7	187.6	93	
17	Spruce-Northern Hardwood	19.4	467	156	43.9	23.5	17.1	123.1	69	
18	Mesic Mixed Pine-Hardwood	3.5	377	147	3.2	28.5	21.8	202.0	91	
19	Spruce-Northern Hardwood	14.1	385	265	17.6	19.5	19.7	114.8	59	
20	Spruce-Northern Hardwood	8.7	438	280	9.4	29.4	18.1	189.1	80	
21	Northern Hardwood	17.6	542	243	0.0	28.5	19.8	186.7	80	
22	Northern Hardwood	12.3	422	212	0.0	26.4	21.7	185.3	88	
23	Hemlock Hardwood	10.5	315	229	33.9	22.6	24.1	143.9	64	
24	Northern Hardwood	19.4	542	189	4.7	29.4	25.1	190.3	89	
25	Northern Hardwood	7.0	434	244	0.0	35.0	21.7	240.1	94	
26	Beech-Maple	8.7	478	253	8.3	20.7	13.7	140.3	67	
27	Hemlock Hardwood	23.1	135	47	49.2	37.3	22.8	218.2	93	
28	Northern Hardwood	12.3	544	235	4.4	31.2	17.6	209.2	98	
29	Pine Hardwood	10.5	269	240	27.6	34.9	20.7	203.8	86	
30	Northern Hardwood	21.3	397	181	5.1	22.4	17.1	145.4	72	
31	Northern Hardwood	19.4	393	75	0.0	23.9	20.6	171.3	81	
32	Pine Hardwood	3.5	463	77	25.4	27.1	13.7	148.1	80	
33	Mesic Mixed Pine-Hardwood	8.7	333	254	3.1	29.8	16.9	175.7	91	
34	Spruce-Northern Hardwood	21.3	415	32	2.3	19.7	15.4	113.4	65	
35	Northern Hardwood	14.1	601	223	3.3	28.0	18.6	182.2	93	
		Mean	14.1	361.83	N/A	17.9	28.9	20.2	184.3	82.4

767 **Table 2** – Independent variables used in the Classification and Regression Tree (CART) multi-
 768 variable analysis, their classification as categorical or numeric, levels if categorical, and number
 769 of sites for each classification. Certifications included in this study were: Northeast Organic
 770 Farming Association (NOFA; www.nofa.org/index.php); Vermont Family Forests
 771 (www.familyforests.org/); Tree Farm (www.treefarmsystem.org/cms/pages/26_19.html); and
 772 Forest Stewardship Council (FSC; www.fsc.org/). Other non-formal certifications included:
 773 Vermont Land Trust (VLT; www.vlt.org/); Biomass Crop Assistance Program (BCAP;
 774 www.fsa.usda.gov/FSA/webapp?area=home&subject=ener&topic=bcap); and easements held by
 775 the USDA Forest Service (FSE).

Independent Variable	Type	Levels	Number of Sites
Tenure	Categorical	public private	6 29
Ownership	Categorical	Family/Co-op State Corporate/Institutional	23 6 6
Certifications	Categorical	No: None, VLT, BCAP, FSE Yes: NOFA, VT Family Forests, Tree Farm, FSC	23 12
Current Use	Categorical	Yes No	22 13
Current Management	Categorical	sugarbush forestland	7 28
Marking by Professional Forester	Categorical	Yes No	28 7
Season of Harvest	Categorical	Summer Summer and Winter Fall Winter	10 4 4 17
Type of Harvest	Categorical	Bioenergy – WTH Bioenergy – no WTH No Bioenergy – no WTH	25 4 6
Primary Treatment	Categorical	thinning from above thinning from below single-tree selection shelterwood group selection uneven aged combo	8 10 6 4 4 3
Secondary Treatment	Categorical	thinning from above	2

		thinning from below	8
		single-tree selection	1
		group selection	4
		salvage logging	2
		scarification	2
		none	16
Skidder	Categorical	grapple skidder	15
		cable skidder	10
		both cable and grapple skidders	7
		none (bulldozer/forwarder only)	3
Cutting Equipment	Categorical	shear	20
		chainsaw	10
		shear/chainsaw	5
Chipping Location for WTH	Categorical	landing	25
		electric power plant	4
		N/A (no bioenergy)	6
Bioenergy (% by Volume)	Continuous	numeric	29
Buyer/End User of Bioenergy	Categorical	municipal	24
		municipal/schools	2
		municipal/pulp-mill or pulp-mill	3
		N/A (no bioenergy)	6

776

777

778 **Table 3** – Energy conversion factor (GJ/tonne) for bioenergy (GJ/tonne) and fossil fuels
 779 (GJ/gallon) and emission factors (Mt CO₂e/GJ) for electricity, thermal, and combined heat and
 780 power (CHP).

Type of Energy Generated	Assumed Efficiency (%)	Energy Content (GJ)		Emission Factor (Mt CO ₂ e/GJ)	
		Bioenergy (per tonne)	Fossil Fuel (per gallon)	Bioenergy	Fossil Fuel
Electricity	30 ¹	4.80 ²	N/A ³	0.38 ⁴	0.11 ⁵
Thermal	80 ⁶	12.80 ²	0.09 ⁷	0.14 ⁴	0.08 ⁷
CHP	55 (80 overall) ⁸	8.80 ²	0.06 ⁷	0.21 ⁴	0.12 ⁷

781
 782 ¹ Midpoint of 20-40 % electricity efficiency (Demirbas 2001).
 783 ² Lower heating value of 16 GJ per dry tonne (50 % moisture) (Demirbas 2001).
 784 ³ The Northeast (NEWE) grid is made up of various sources of fuel; therefore, one GJ/gallon value
 785 is not appropriate.
 786 ⁴ Based on assumption that 50 % of the mass of wood is C (Birdsey 1992).
 787 ⁵ NEWE eGrid emission factor (Rothschild et al. 2009).
 788 ⁶ Direct combustion with 20 % loss (Demirbas 2001).
 789 ⁷ Natural gas (California Air Resources Board 2010).
 790 ⁸ CHP has 80 % overall efficiency: 30% efficiency for electric and 50% for heating.
 791

792

793 **Table 4** – Mean carbon content (Mg C/ha) in harvested and unharvested stands immediately
 794 post-harvest. The mean \pm SE is shown in aboveground live, aboveground dead, DCWD, FWD,
 795 and total stand C for the 3 types of harvests.

Forest Stand	No Bioenergy no WTH		Bioenergy with WTH		Bioenergy no WTH	
	Harvested	Unharvested	Harvested	Unharvested	Harvested	Unharvested
Aboveground Live C	71.00 \pm 10.85	96.03 \pm 8.96	57.30 \pm 3.12	86.73 \pm 3.15	85.48 \pm 4.84	120.04 \pm 15.06
Aboveground Dead C	1.07 \pm 0.31	1.86 \pm 0.58	0.86 \pm 0.15	1.56 \pm 0.23	0.75 \pm 0.25	3.41 \pm 1.05
DCWD C	8.05 \pm 1.11	5.33 \pm 1.68	6.26 \pm 0.52	6.44 \pm 0.60	9.92 \pm 2.03	6.52 \pm 1.16
FWD C	2.35 \pm 0.28	1.06 \pm 0.10	2.00 \pm 0.23	1.31 \pm 0.10	2.15 \pm 0.33	1.32 \pm 0.10
Total Forest C	82.48 \pm 10.65	104.28 \pm 9.14	69.09 \pm 3.49	98.10 \pm 2.80	103.42 \pm 4.95	142.75 \pm 8.63

796

797

798

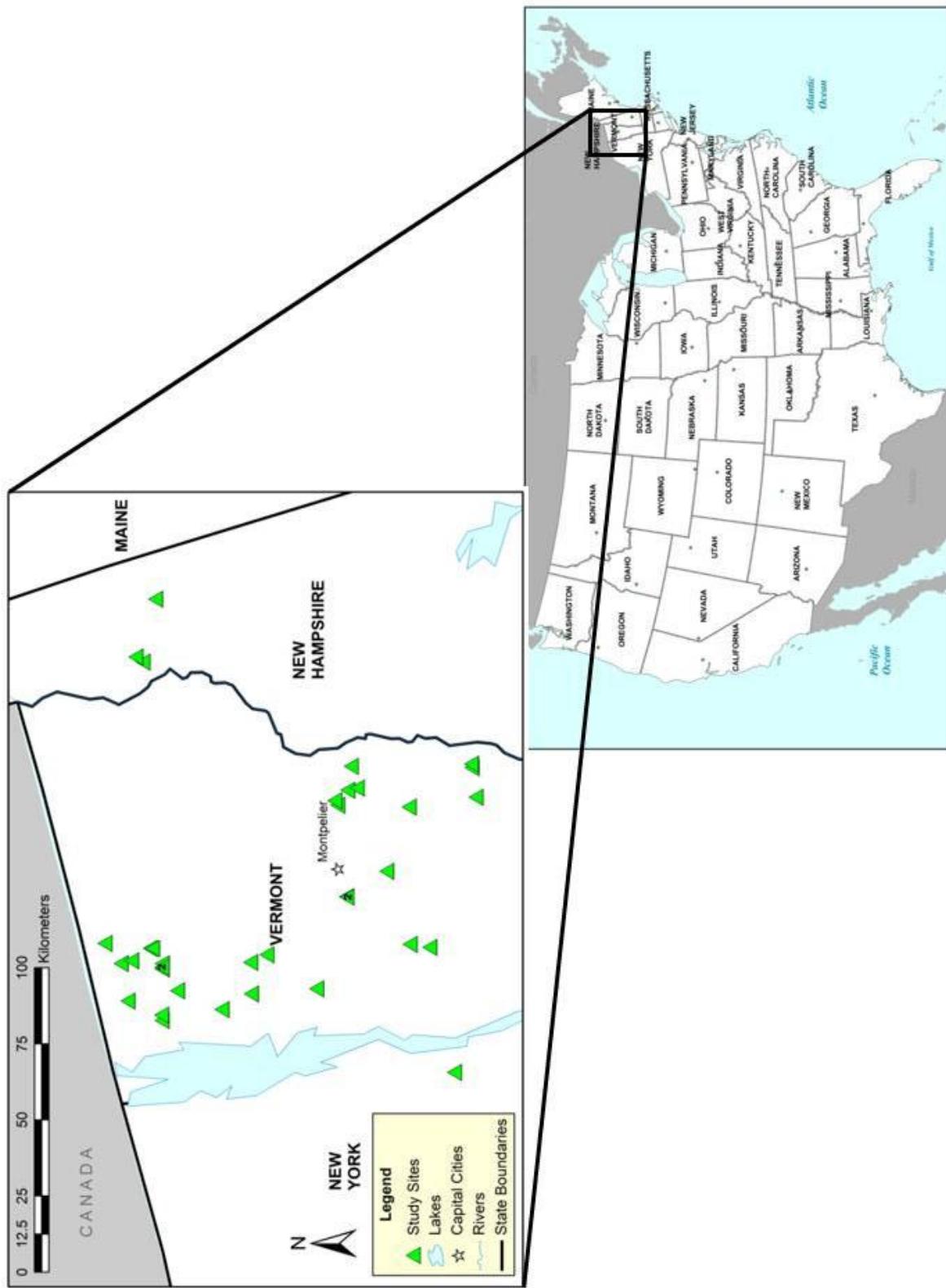
799 **Table 5** – Wilcoxon Signed Rank test results for comparing paired harvested and unharvested
 800 stands for the 3 types of harvests for each of the forest stand C pools. The results for all the
 801 harvests combined are shown as well. The test for live tree, snag, and total carbon pools was
 802 one-sided, whereas the DCWD and FWD test was two-sided. The statistically significant results
 803 are indicated in bold.

		Live Tree	Snags	DCWD	FWD	TOTAL
No Bioenergy no WTH	Test Statistic S	10.50	4.50	-5.50	-10.50	10.50
	d.f.	5	5	5	5	5
	<i>P</i> -value	0.02	0.22	0.31	0.03	0.02
Bioenergy with WTH	Test Statistic S	162.50	96.50	6.50	-66.00	95.00
	d.f.	24	24	24	18	18
	<i>P</i> -value	< 0.0001	0.003	0.87	0.01	< 0.0001
Bioenergy no WTH	Test Statistic S	5.00	5.00	-3.00	-3.00	3.00
	d.f.	3	3	3	2	2
	<i>P</i> -value	0.06	0.06	0.38	0.25	0.13
All Harvests	Test Statistic S	10.68	3.70	-0.93	-4.57	13.05
	d.f.	34	34	34	27	27
	<i>P</i> -value	< 0.0001	0.0002	0.43	< 0.0001	< 0.0001

804

805

806 **Figure 1** – Map of the study sites ($N=35$). Where two sites overlap due to close proximity, a ‘2’
807 indicates that there are 2 properties sampled in that location.

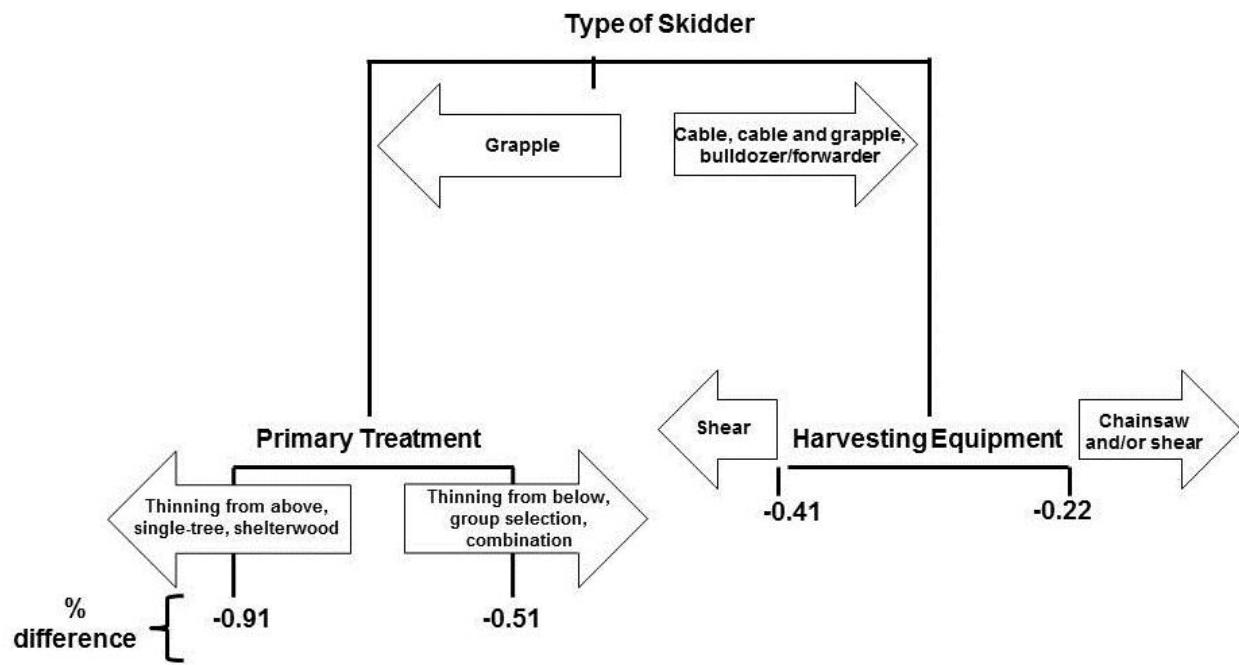

808

809 **Figure 2** – Total mean carbon (Mg C/ha) in harvested stands by harvest type. The C/ha is shown
810 for: the measured forest stand pools; C transferred to wood products by wood product type;
811 emissions from the generation of each of those wood products; emissions for bioenergy
812 productions; avoided emissions from fossil fuel offsets. The error bars indicate total SE for the
813 total forest C, wood products, and energy emissions.

814

815 **Figure 3** – Classification and Regression Tree (CART) analysis on percent difference in total net
816 C flux from unharvested to harvested sites. The CART ranks the independent variable based on
817 predictive power with the variable that explains the highest amount of variance in the dependent
818 variable on top. The size of the branch shows the amount of deviance explained by the
819 independent variable at the top of the split and the length of the node illustrates the total sum of
820 squares explained by the split. The independent variables used in the CART analysis are those
821 from Table 2. Minimum number of observations used before split = 5; minimum node size = 10;
822 minimum deviance required before split = 0.01; $n = 112$. In CART, n is calculated by
823 multiplying the number of observations ($n = 28$) by the number of levels of the variable that
824 explains the largest amount of variance ($n = 4$). Redrawn from S-Plus.

825 Figure 1


827 Figure 2

828

829

830 Figure 3

